תשובות לoעיפים 1.1, 1.5 :

$\dot{x}=0 \quad \Rightarrow x^{2}=y^{2} \longrightarrow y=x=x$
$\dot{y}=0 \quad \Rightarrow \quad x^{2}+y^{2}=2$
[1.2 $\dot{x}=0, \dot{j}=0 \Rightarrow 2 x^{2}=2$

$$
(1,1),(1,-1),(-1,1),(-1,-1)
$$

$$
\begin{aligned}
& 2 x^{2}=2 \\
& x^{2}=1 \longrightarrow x=1 \longrightarrow \longrightarrow^{\longrightarrow} \longrightarrow_{x=-1} \longrightarrow_{2=-1}=2=-1
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
2 x & -2 y \\
2 x & 2 y
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
-2 & 2 \\
-2 & -2
\end{array}\right) \\
& \therefore(-1,-1) \quad 331,1-2 \\
& \Delta=8 \quad \tau=-4 \\
& \lambda=\frac{1}{2}[-4 \pm \sqrt{16-32}]=-2 \pm 2 i \quad 20.3,2500 \\
& \left(\begin{array}{cc}
2 & 2 \\
2 & -2
\end{array}\right) \\
& \therefore(1,-1) \quad 3311 \\
& \Delta=-8 \quad \tau=0 \\
& \lambda=\frac{1}{2}[0 \pm \sqrt{32}]= \pm 2 \sqrt{2} \quad \rho_{3} / K
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=f(x)+u(t) \\
& x(0)=0
\end{aligned}
$$

כאשר הקלט נתון בגרף:

$$
2.1
$$

ציירו בקירוב את $x(t):$

כעת נתון כי $f(x)$ היא פונקציה אחרת, ואילו $x(t)$ נתון לפי הגרף הבא:

שרטטו פונקציה אפשרית $f(x)$ שיכולה להסביר את הגרף של (t):

$$
\begin{aligned}
& \dot{x}=-x+u(t) \\
& x(0)=0 \\
& X(2)=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore t=2 \quad 3 \gamma \\
& : T=2 \quad \text { penf } \quad U=1 \\
& x(4)=1-e^{-2} \approx 0.86 \\
& : T=1 \quad \text { pend } \quad U=0 \\
& x(5)=x(4) e^{-1} \approx 0.32
\end{aligned}
$$

1	נוטחאות נכונות (2)
1	נוסחאות נכונות (4)
1	נוסחאות נכונות (\%)
1	ערכים מספריים נכונים (4)
1	גרף תואם את זמנים <
1	$\mathrm{X}(6)>\mathrm{x}(3)$
1	$\mathrm{X}(6)<3$
1	t=6 דעיכה

1	$\mathrm{F}(0)>0$
2	נק=1
2	נק=3 נקודת שבת יציבה
1	אין נקודות יציבות נוספות בין 1 בין
2	נקודת המינימום של F בין 1=x לבין נקודת השבת הלא יציבה מקיימת: $-3<f(a)<-1$

